题目内容

9.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=$\frac{2}{x}$上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是(  )
A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<0

分析 根据反比例函数y=$\frac{2}{x}$和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.

解答 解:∵反比例函数y=$\frac{2}{x}$中,2>0,
∴在每一象限内,y随x的增大而减小,
∵x1<x2<x3,y2<y1<y3
∴点A,B在第三象限,点C在第一象限,
∴x1<x2<0<x3
∴x1•x2>0,
故选A.

点评 本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网