题目内容
4.分析 先根据正六边形及正三角形的性质用∠1表示出∠BAC,用∠2表示出∠ACB,用∠3表示出∠ABC,再由三角形内角和定理即可得出结论.
解答
解:∵图中是一个正六边形和两个等边三角形,
∴∠BAC=180°-∠1-120°=60°-∠1,∠ACB=180°-∠2-60°=120°-∠2,∠ABC=180°-60°-∠3=120°-∠3,
∵∠3=70°,
∴∠ABC=180°-60°-∠3=120°-70°=50°.
∵∠BAC+∠ACB+∠ABC=180°,即60°-∠1+120°-∠2+50°=180°,
∴∠1+∠2=50°.
故答案为:50°.
点评 本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
练习册系列答案
相关题目
19.某公司在销售一种产品进价为10元的产品时,每年总支出为10万元(不含进价).经过若干年销售得知,年销售量y(万件)是销售单价x(元)的一次函数,并得到如下部分数据:
(1)则y关于x的函数关系式是y=$-\frac{1}{2}x+13$;
(2)写出该公司销售这种产品的年利润w(万元)关于销售单价x(元)的函数关系式;当销售单价x为何值时,年利润最大?
(3)试通过(2)中的函数关系式及其大致图象,帮助该公司确定产品的销售单价范围,使年利润不低于14万元(请直接写出销售单价x的范围).
| 销售单价 x(元) | 16 | 18 | 20 | 22 |
| 年销售量y(万件) | 5 | 4 | 3 | 2 |
(2)写出该公司销售这种产品的年利润w(万元)关于销售单价x(元)的函数关系式;当销售单价x为何值时,年利润最大?
(3)试通过(2)中的函数关系式及其大致图象,帮助该公司确定产品的销售单价范围,使年利润不低于14万元(请直接写出销售单价x的范围).
13.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )

| A. | (3)(4)(1)(2) | B. | (4)(3)(1)(2) | C. | (4)(3)(2)(1) | D. | (2)(4)(3)(1) |
14.下列几组数中不能作为直角三角形的三边长的是( )
| A. | $\sqrt{2}$,$\sqrt{2}$,2 | B. | 9,16,25 | C. | 6,8,10 | D. | 5,12,13 |