ÌâÄ¿ÄÚÈÝ

15£®Í¼1ÖУ¬¶þ´Îº¯Êýy=-ax2-4ax-$\frac{3}{4}$µÄͼÏóc½»xÖáÓÚA£¬BÁ½µã£¨AÔÚBµÄ×ó²à£©£¬¹ýAµãµÄÖ±Ïß$y=kx+3k£¨k£¼-\frac{1}{4}£©$½»cÓÚÁíÒ»µãC£¨x1£¬y1£©£¬½»yÖáÓÚM£®
£¨1£©ÇóµãAµÄ×ø±ê£¬²¢Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¹ýµãB×÷BD¡ÍAC½»ACÓÚD£¬ÈôM£¨0£¬-3$\sqrt{3}$£©ÇÒQµãÊÇÖ±ÏßACÉϵÄÒ»¸ö¶¯µã£®Çó³öµ±¡÷DBQÓë¡÷AOMÏàËÆÊ±µãQµÄ×ø±ê£»
£¨3£©ÉèP£¨-1£¬2£©£¬Í¼2ÖÐÁ¬CP½»¶þ´Îº¯ÊýµÄͼÏóÓÚÁíÒ»µãE£¨x2£¬y2£©£¬Á¬AE½»yÖáÓÚN£®OM•ONÊÇ·ñÊÇÒ»¸ö¶¨Öµ£¿Èç¹ûÊǶ¨Öµ£¬Çó³ö¸ÃÖµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÖ±Ïßy=kx+3kÇó³öµãA×ø±ê£¬´úÈëÅ×ÎïÏß½âÎöʽ¼´¿É½â¾öÎÊÌ⣮
£¨2£©·ÖËÄÖÖÇéÐÎÌÖÂÛ¢ÙÈçͼ1ÖУ¬µ±QÔÚDAµÄÑÓ³¤ÏßÉÏʱ£¬¡ÏBQD=30¡ã£¬¡÷BQD¡«¡÷AOM£¬¢Úµ±QÓëµãAÖØºÏʱ£¬¡ÏBQD=60¡ã¡÷DQB¡«¡÷OAM£¬¢ÛÈçͼ2ÖУ¬µ±QÔÚÏß¶ÎDCÉÏʱ£¬¡ÏBQD=60¡ã£¬¡÷DQB¡«¡÷OAM£¬¢ÜÈçͼ3ÖУ¬µ±¡ÏBQD=30¡ãʱ£¬¡÷DQB¡«¡÷OMA·Ö±ð½âÖ±½ÇÈý½ÇÐμ´¿É£®
£¨3£©Çó³öÖ±ÏßPCµÄ½âÎöʽ£¬ÓëÅ×ÎïÏß×é³É·½³Ì×éÇó³öµãE×ø±ê£¬ÔÙÇó³öÖ±ÏßAEºóÇó³öµãN×ø±ê£¬ÓÃk±íʾOM¡¢ON¼´¿É½â¾öÎÊÌ⣮

½â´ð £¨1£©½â£ºy=0£¬kx+3k=0½âÖ®µÃx=-3£¬ËùÒÔA£¨-3£¬0£©£¬
ÒòΪA£¨-3£¬0£©ÔÚy=-ax2-4ax-$\frac{3}{4}$£¬ËùÒÔ0=-9a+12a-$\frac{3}{4}$£¬
½âÖ®¿ÉµÃa=$\frac{1}{4}$£¬
ËùÒԸöþ´Îº¯ÊýµÄ±í´ïʽy=-$\frac{1}{4}$x2-x-$\frac{3}{4}$£¬
£¨2£©ÔÚRt¡÷AOMÖУ¬OA=3£¬OM=3$\sqrt{3}$tan¡ÏOAM=$\frac{OM}{AO}$=$\sqrt{3}$£¬ËùÒÔ¡ÏOAM=60¡ã£¬
¢ÙÈçͼ1ÖУ¬µ±QÔÚDAµÄÑÓ³¤ÏßÉÏʱ£¬¡ÏBQD=30¡ã£¬¡÷BQD¡×¡÷AOM£¬
ÔÚRt¡÷ABDÖУ¬BD=BA¡Ásin60¡ã=$\sqrt{3}$£¬
ÔÚRt¡÷BQDÖУ¬BD=OQ¡Ásin30¡ã=$\sqrt{3}$£¬½âµÃBQ=2$\sqrt{3}$£¬
¹ýQ×÷ÔÚQQ¡ä¡ÍxÖá´¹×ãΪQ¡ä£¬
¡ß¡ÏBAD=60¡ã=¡ÏBQA+¡ÏQBA£¬¡ÏBQD=30¡ã£¬
¡à¡ÏQBQ¡ä=30¡ã£¬
ÔÚRT¡÷BQQ¡äÖУ¬¡ß¡ÏQBQ¡ä=30¡ã£¬BQ=2$\sqrt{3}$£¬
QQ¡ä=$\sqrt{3}$£¬BQ¡ä=3£¬
ËùÒÔQ£¨-4£¬$\sqrt{3}$£©£®
¢Úµ±QÓëµãAÖØºÏʱ£¬¡ÏBQD=60¡ã¡÷DQB¡×¡÷OAM£¬´ËµãQ£¨-3£¬0£©£®
¢ÛÈçͼ2ÖУ¬µ±QÔÚÏß¶ÎDCÉÏʱ£¬¡ÏBQD=60¡ã£¬¡÷DQB¡×¡÷OAM£¬
ÔÚ¡÷AQBÖУ¬¡ÏBAQ=¡ÏAQB=60¡ã£¬
µÃBQ=AB=2£¬
ËùÒÔQ£¨-2£¬-$\sqrt{3}$£©£®
¢ÜÈçͼ3ÖУ¬µ±¡ÏBQD=30¡ãʱ£¬¡÷DQB¡×¡÷OMA£¬´ËʱBQ¡ÎOM
ÉèQ£¨-1£¬y£©ÔÚÖ±Ïßy=-$\sqrt{3}$x-3$\sqrt{3}$-ÉÏ£¬½âµÃy=-2$\sqrt{3}$£¬
´Ó¶øQ£¨-1£¬-2$\sqrt{3}$£©£®
×ÛÉÏËùÊö£¬Q£¨-4£¬$\sqrt{3}$£©»òQ£¨-3£¬0£©»òQ£¨-2£¬-$\sqrt{3}$£©»òQ£¨-1£¬-2$\sqrt{3}$£©£®
£¨3£©Èçͼ4ÖУ¬Ö±Ïßy=kx+3kÓë¶þ´Îº¯Êýy=-$\frac{1}{4}$x2-x-$\frac{3}{4}$ͼÏóµÄ½»µãÊÇA£¬CÁ½µã£¬
ËùÒÔ$\left\{\begin{array}{l}y=-\frac{1}{4}{x^2}-x-\frac{3}{4}\\ y=kx+3k\end{array}$£¬ÕûÀí¿ÉµÃ$\frac{1}{4}{x}^{2}$+£¨k+1£©x+£¨$\frac{3}{4}$+3k£©=0£¬
ÓÖÒòΪA£¨-3£¬0£©£¬C£¨x1£¬y1£©£¬
ËùÒÔx1=-4k-1£¬y1=-4k2+2k£¬
¹ýµãP£¨-1£¬2£©ÓëµãCµÄÖ±ÏߣºY=$\frac{-4{k}^{2}+2k-2}{-4k}$x+$\frac{-4{k}^{2}+2k-2}{-4k}$+2£¬
Ö±ÏßPCÓëÅ×ÎïÏߵĽ»µã£¬$\left\{\begin{array}{l}{y=-\frac{1}{4}{x}^{2}-x-\frac{3}{4}}\\{y=\frac{-4{k}^{2}+2k-2}{-4k}x+\frac{-4{k}^{2}+2k-2}{-4k}+2}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½£º
$\frac{1}{4}\\;{x}^{2}$x2+£¨1+$\frac{-4{k}^{2}+2k-2}{-4k}$£©x+$\frac{-4{k}^{2}+2k-2}{-4k}-\frac{5}{4}$=0£¬
¡àx2+x1=x2+£¨-4k-1£©=-$\frac{1+\frac{-4{k}^{2}+2k-2}{-4k}}{\frac{1}{4}}$£¬
¡àx2=-1-$\frac{2}{k}$£¬y2=$\frac{1}{k}-\frac{1}{{k}^{2}}$£¬
¡àÖ±ÏßAEΪy=$\frac{1}{2k}$x+$\frac{3}{2k}$£¬
¡àOM=-3k£¬ON=-$\frac{3}{2k}$£¬
¡àOM•ON=£¨-3k£©£¨-$\frac{3}{2k}$£©=$\frac{9}{2}$£®
¡àOM•ONÊǶ¨Öµ£¬Õâ¸ö¶¨ÖµÊÇ$\frac{9}{2}$£®




µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÓйØÖªÊ¶¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ö±½ÇÈý½ÇÐÎ30¶È½ÇµÄÐÔÖʵÈ֪ʶ£¬Ñ§»á´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£¬Ñ§»áÓòÎÊý±íʾֱÏß½âÎöʽ¡¢µãµÄ×ø±ê£¬ÕÆÎÕ·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø