题目内容

如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有(  )
A、1个B、2个C、3个D、4个
考点:全等三角形的判定
专题:
分析:先由1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.
解答:解:∵1=∠2,
∴∠CAB=∠DAE,
∵AC=AD,
∴当AB=AE时,可根据“SAS”判断△ABC≌△AED;
当BC=ED时,不能判断△ABC≌△AED;
当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;
当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.
故选C.
点评:本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网