题目内容

18.已知关于x的方程x2-2(k+1)x+k2=0有两个实数根x1、x2
(1)求k的取值范围;
(2)若x1+x2=3x1x2-6,求k的值.

分析 (1)根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到△≥0,即4(k+1)2-4×1×k2≥0,解不等式即可得到k的范围;
(2)根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2(k+1),x1x2=k2,则2(k+1)=3k2-6,即3k2-2k-8=0,利用因式分解法解得k1=2,k2=-$\frac{4}{3}$,然后由(1)中的k的取值范围即可得到k的值.

解答 解:(1)∵方程x2-2(k+1)x+k2=0有两个实数根x1,x2
∴△≥0,即4(k+1)2-4×1×k2≥0,解得k≥-$\frac{1}{2}$,
∴k的取值范围为k≥-$\frac{1}{2}$;

(2)∵方程x2-2(k+1)x+k2=0有两个实数根x1,x2
∴x1+x2=2(k+1),x1x2=k2
∵x1+x2=3x1x2-6,
∴2(k+1)=3k2-6,即3k2-2k-8=0,
∴k1=2,k2=-$\frac{4}{3}$,
∵k≥-$\frac{1}{2}$,
∴k=2.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网