题目内容
10.| A. | B. | C. | D. |
分析 根据主视图是从正面看得到的图形,可得答案.
解答 解:从正面看第一层是两个小正方形,第二层右边一个小正方形,
故选:B.
点评 本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
练习册系列答案
相关题目
1.同时抛掷两枚质量均匀的硬币,恰好一枚正面朝上、一枚反面朝上的概率是( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
18.
有这样一个问题:探究函数y=$\frac{{\sqrt{x+2}}}{x}$的图象与性质.小美根据学习函数的经验,对函数y=$\frac{{\sqrt{x+2}}}{x}$的图象与性质进行了探究.下面是小美的探究过程,请补充完整:
(1)函数y=$\frac{{\sqrt{x+2}}}{x}$的自变量x的取值范围是x≥-2且x≠0;
(2)下表是y与x的几组对应值.
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)结合函数的图象,写出该函数的一条性质:当-2≤x<0或x>0时,y随x增大而减小.
(1)函数y=$\frac{{\sqrt{x+2}}}{x}$的自变量x的取值范围是x≥-2且x≠0;
(2)下表是y与x的几组对应值.
| x | -2 | -$\frac{3}{2}$ | -1 | -$\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{2}$ | 1 | 2 | 3 | 4 | … |
| y | 0 | -$\frac{{\sqrt{2}}}{3}$ | -1 | -$\sqrt{6}$ | $\sqrt{21}$ | $\sqrt{10}$ | $\sqrt{3}$ | m | $\frac{{\sqrt{5}}}{3}$ | $\frac{{\sqrt{6}}}{4}$ | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)结合函数的图象,写出该函数的一条性质:当-2≤x<0或x>0时,y随x增大而减小.
15.-$\frac{3}{2}$的倒数是( )
| A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
19.在平面直角坐标系中,若点P坐标为(2,-3),则它位于第几象限( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
10.在Rt△ABC中,∠C=90°,C为斜边,a,b为直角边,a+b=14,c=10,则Rt△ABC面积为( )
| A. | 24 | B. | 36 | C. | 48 | D. | 60 |