题目内容
10.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)当点P与点Q重合时,如图1,写出QE与QF的数量关系,不证明;
(2)当点P在线段AB上且不与点Q重合时,如图2,(1)的结论是否成立?并证明;
(3)当点P在线段BA(或AB)的延长线上时,如图3,此时(1)的结论是否成立?请画出图形并给予证明.
分析 (1)证△BFQ≌△AEQ即可;
(2)证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可;
(3)证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可
解答
解:(1)QE=QF,
理由是:如图1,∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴∠BFQ=∠AEQ=90°,
在△BFQ和△AEQ中$\left\{\begin{array}{l}{∠BFQ=∠AEQ}\\{∠BQF=∠AQE}\\{BQ-AQ}\end{array}\right.$
∴△BFQ≌△AEQ(AAS),
∴QE=QF,
(2)(1)中的结论仍然成立,
证明:如图2,延长FQ交AE于D,
∵Q为AB中点,
∴AQ=BQ,![]()
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠QAD=∠FBQ,
在△FBQ和△DAQ中,$\left\{\begin{array}{l}{∠FBQ=∠DAQ}\\{BQ=AQ}\\{∠BQF=∠AQD}\end{array}\right.$,
∴△FBQ≌△DAQ(ASA),
∴QF=QD,
∵AE⊥CP,
∴EQ是Rt△DEF斜边上的中线,
∴QE=QF=QD,
即QE=QF.
(3)(1)中的结论仍然成立,
证明:如图3,
延长EQ、FB交于D,![]()
∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠1=∠D,
在△AQE和△BQD中,$\left\{\begin{array}{l}{∠1=∠D}\\{∠2=∠3}\\{AQ=BQ}\end{array}\right.$,
∴△AQE≌△BQD(AAS),
∴QE=QD,
∵BF⊥CP,
∴FQ是Rt△DEF斜边DE上的中线,
∴QE=QF.
点评 此题是三角形综合题,主要考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,判断三角形全等是解本题的关键.
| A. | 8.3 | B. | 9.6 | C. | 12.6 | D. | 13.6 |
| A. | 2.5 | B. | ±2.5 | C. | 5 | D. | ±5 |