题目内容

6.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为($\frac{5}{2}$,-$\frac{51\sqrt{3}}{2}$).

分析 根据等边三角形的性质可得出A2(2,$\sqrt{3}$),A4($\frac{5}{2}$,-$\frac{3\sqrt{3}}{2}$),A6(2,2$\sqrt{3}$),A8($\frac{5}{2}$,-$\frac{5\sqrt{3}}{2}$),…,根据点的变化找出变化规律“A4n+2(2,$\sqrt{3}$n+$\sqrt{3}$),A4n+4($\frac{5}{2}$,-$\frac{(2n+3)\sqrt{3}}{2}$)(n为自然数)”,依此规律即可得出点A100的坐标.

解答 解:观察,发现规律:A2(2,$\sqrt{3}$),A4($\frac{5}{2}$,-$\frac{3\sqrt{3}}{2}$),A6(2,2$\sqrt{3}$),A8($\frac{5}{2}$,-$\frac{5\sqrt{3}}{2}$),…,
∴A4n+2(2,$\sqrt{3}$n+$\sqrt{3}$),A4n+4($\frac{5}{2}$,-$\frac{(2n+3)\sqrt{3}}{2}$)(n为自然数),
∵100=4×24+4,
∴A100的坐标为($\frac{5}{2}$,-$\frac{51\sqrt{3}}{2}$).
故答案为:($\frac{5}{2}$,-$\frac{51\sqrt{3}}{2}$).

点评 本题考查了等边三角形的性质以及规律型中点的坐标,解题的关键是找出点坐标变化的规律“A4n+2(2,$\sqrt{3}$n+$\sqrt{3}$),A4n+4($\frac{5}{2}$,-$\frac{(2n+3)\sqrt{3}}{2}$)(n为自然数)”.本题属于中档题,难度不大,解决该题型题目时,根据等边三角形的性质找出第三个顶点的坐标,根据坐标的变化找出变化规律是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网