题目内容

6.已知正六边形的边长为2,则它的内切圆的半径为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

分析 根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.

解答 解:如图,连接OA、OB,OG;
∵六边形ABCDEF是边长为2的正六边形,
∴△OAB是等边三角形,
∴OA=AB=2,
∴OG=OA•sin60°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴边长为2的正六边形的内切圆的半径为$\sqrt{3}$.
故选B.

点评 本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网