题目内容

16.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.
(1)若∠O=40°,求∠ECF的度数;
(2)求证:CG平分∠OCD;
(3)当∠O为多少度时,CD平分∠OCF,并说明理由.

分析 (1)根据平行线的性质,得到∠ACE=40°,根据平角的定义以及角平分线的定义,即可得到∠ACF=70°,进而得出∠ECF的度数;
(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,运用等角的余角相等,即可得到∠GCO=∠GCD,即CG平分∠OCD;
(3)当∠O=60°时,根据平行线的性质,得出∠DCO=∠O=60°,再根据角平分线的定义,即可得到∠DCF=60°,据此可得∠DCO=∠DCF.

解答 解:(1)∵DE∥OB,
∴∠O=∠ACE,(两直线平行,同位角相等)
∵∠O=40°,
∴∠ACE=40°,
∵∠ACD+∠ACE=180°,(平角定义)
∴∠ACD=140°,
又∵CF平分∠ACD,
∴∠ACF=70°,(角平分线定义)
∴∠ECF=70°+40°=110°;

(2)证明:∵CG⊥CF,
∴∠FCG=90°,
∴∠DCG+∠DCF=90°,
又∵∠AOC=180°,(平角定义)
∴∠GCO+∠FCA=90°,
∵∠ACF=∠DCF,
∴∠GCO=∠GCD,(等角的余角相等)
即CG平分∠OCD. 

(3)结论:当∠O=60°时,CD平分∠OCF.
当∠O=60°时,
∵DE∥OB,
∴∠DCO=∠O=60°.
∴∠ACD=120°.
又∵CF平分∠ACD,
∴∠DCF=60°,
∴∠DCO=∠DCF,
即CD平分∠OCF.

点评 本题主要考查了平行线的性质以及角平分线的定义,解题时注意:两直线平行,同位角相等,内错角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网