题目内容

7.计算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{10{0}^{2}}$)=$\frac{101}{200}$.

分析 根据平方差公式分解因式后计算即可.

解答 解:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{10{0}^{2}}$)
=$(1-\frac{1}{2})(1+\frac{1}{2})(1-\frac{1}{3})(1+\frac{1}{3})(1-\frac{1}{4})(1+\frac{1}{4})…(1-\frac{1}{100})(1+\frac{1}{100})$
=$\frac{1}{2}×\frac{3}{2}×\frac{2}{3}×\frac{4}{3}×\frac{3}{4}×\frac{5}{4}×…×\frac{99}{100}×\frac{101}{100}$
=$\frac{101}{200}$.
故答案为:$\frac{101}{200}$.

点评 此题考查因式分解的应用,关键是利用平方差公式把原式变形解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网