题目内容

14.如图,?ABCD中,∠ABC=60°,点E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,AB的长是1,则EF=$\sqrt{3}$.

分析 根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,求出CE的长,进而根据直角三角形性质求出EF的长.

解答 解:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD,
∵AE∥BD,
∴四边形ABDE是平行四边形,
∴AB=DE=CD,
即D为CE中点,
∵EF⊥BC,
∴∠EFC=90°,
∵AB∥CD,
∴∠DCF=∠ABC=60°,
∵AB=1,
∴CE=2,
∴EF=$\frac{\sqrt{3}}{2}$CE=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题考查了平行四边形的性质和判定,平行线性质,勾股定理,解题的关键是求出CE=2AB,此题综合性比较强,是一道比较好的题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网