题目内容
19.设方程2x2+3x-1=0的两根为x1和x2,不解方程求下列各式的值.(1)$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$;
(2)$\frac{{x}_{2}}{{x}_{1}+1}$+$\frac{{x}_{1}}{{x}_{2}+1}$.
分析 根据根与系数的关系即可得出x1+x2=-$\frac{3}{2}$,x1•x2=-$\frac{1}{2}$.
(1)利用通分以及配方法将$\frac{{x}_{2}}{{x}_{1}}+\frac{{x}_{1}}{{x}_{2}}$变形为$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}•{x}_{2}}{{x}_{1}•{x}_{2}}$,再代入x1+x2=-$\frac{3}{2}$、x1•x2=-$\frac{1}{2}$即可算出结果;
(2)利用通分以及配方法将$\frac{{x}_{2}}{{x}_{1}+1}+\frac{{x}_{1}}{{x}_{2}+1}$变形为$\frac{({x}_{1}+{x}_{2})^{2}+({x}_{1}+{x}_{2})-2{x}_{1}•{x}_{2}}{{x}_{1}•{x}_{2}+({x}_{1}+{x}_{2})}$,再代入x1+x2=-$\frac{3}{2}$、x1•x2=-$\frac{1}{2}$即可算出结果.
解答 解:∵方程2x2+3x-1=0的两根为x1和x2,
∴x1+x2=-$\frac{3}{2}$,x1•x2=-$\frac{1}{2}$.
(1)$\frac{{x}_{2}}{{x}_{1}}+\frac{{x}_{1}}{{x}_{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}•{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}•{x}_{2}}{{x}_{1}•{x}_{2}}$=$\frac{(-\frac{3}{2})^{2}-2×(-\frac{1}{2})}{-\frac{1}{2}}$=-$\frac{13}{2}$;
(2)$\frac{{x}_{2}}{{x}_{1}+1}+\frac{{x}_{1}}{{x}_{2}+1}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+{(x}_{1}+{x}_{2})}{{x}_{1}•{x}_{2}+({x}_{1}+{x}_{2})}$=$\frac{({x}_{1}+{x}_{2})^{2}+({x}_{1}+{x}_{2})-2{x}_{1}•{x}_{2}}{{x}_{1}•{x}_{2}+({x}_{1}+{x}_{2})}$=$\frac{(-\frac{3}{2})^{2}+(-\frac{3}{2})-2×(-\frac{1}{2})}{-\frac{1}{2}+(-\frac{3}{2})}$=-$\frac{7}{8}$.
点评 本题考查了根与系数的关系,解题的关键是:(1)将原式变形为$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}•{x}_{2}}{{x}_{1}•{x}_{2}}$;(2)将原式变形为$\frac{({x}_{1}+{x}_{2})^{2}+({x}_{1}+{x}_{2})-2{x}_{1}•{x}_{2}}{{x}_{1}•{x}_{2}+({x}_{1}+{x}_{2})}$.
填写下列表格:
| x/cm | 1 | 3 | 5 | 7 | 9 | 11 | 13 |
| S/cm2 | 10 | 30 | 50 | 70 | 60 | 40 | 20 |