题目内容
如图,在中, ,点在斜边上,以为直径的⊙与相切于.若.
(1)求⊙的半径;
(2)求图中阴影部分的面积.
已知,如图, , 那么△ABD与△BCE相似吗?为什么?
【探究证明】
(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.
如图①,在矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: ;
【结论应用】
(2)如图②,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若,则的值为 ;
【联系拓展】
(3)如图③,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.
已知函数y=的图象如图所示,以下结论,其中正确的有( )
①m<0;
②在每个分支上y随x的增大而增大;
③若点A(-1,a),点B(2,b)在图象上,则a<b;
④若P(x,y)在图象上,则点P1(-x,-y)也在图象上.
A. 4个 B. 3个 C. 2个 D. 1个
有五张反面相同的卡片的正面分别写有“我”“的”“中”“国”“梦”,五张卡片洗匀后将其反面朝上放在桌面上,小明从中任意抽取两张卡片,恰好是“中国”的概率是( )
A. B. C. D.
计算: .
抛物线的最小值是_________.
如图,已知反比例函数y=的图象经过点A(-1, ).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕点O逆时针旋转30°后得到线段OB,求出点B的坐标,并判断点B是否在此反比例函数的图象上.
如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.
(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?
(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由____变化到____.