题目内容

“国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤网,空气净化器和过滤网在两家商场的售价一样.已知买一个空气净化器和个过滤网要花费元,买个空气净化器和个过滤网要花费元.

)请用方程组求出一个空气净化器与一个过滤网的销售价格分别是多少元?

)为了迎接新年,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买一个空气净化器赠送两个过滤网.若某单位想要买个空气净化器和个过滤网,如果只能在一家商场购买,请问选择哪家商场购买更合算?请说明理由.

()一个空气净化器元,一个过滤网元;()苏宁更合算. 【解析】试题分析:(1)设一个空气净化器元,一个过滤网元,根据等量关系:1个净化器+1个过滤网=2200,2个净化器+3个过滤网=4760,列方程组即可得解; (2)分别计算出在每一家需要花费的钱数,比较即可得. 试题解析:()设一个空气净化器元,一个过滤网元, , 则一个空气净化器元,一个过滤网元. ()国...
练习册系列答案
相关题目

(1)如图1,在一块宽为12m,长为20m的矩形地面上修筑同样宽的道路,余下的部分种上草坪.要使草坪的面积为180m2,求道路的宽;

(2)现在对该矩形区域进行改造,如图2,在正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形面积的,求道路的宽.

【答案】(1)道路宽为2米;(2)道路的宽为1米.

【解析】试题分析:(1)设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(20﹣x)(12﹣x)米2,进而即可列出方程,求出答案;

(2)设道路的宽为x米,则正方形边长为4x,根据道路与观赏亭的面积之和是矩形面积的,列方程求解即可.

试题解析:【解析】
(1)设道路宽为x米,

根据题意得:(20﹣x)(12﹣x)=180

解得:x1=30(舍去),x2=2

答:道路宽为2米;

(2)设道路的宽为x米,

则可列方程:x(12-4x)+x(20-4x)+16x2=×20×12,

即:x2+4x-5=0,

解得:x1=1,x2=-5(舍去),

答:道路的宽为1米.

点睛:考查了一元二次方程的应用,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.

【题型】解答题
【结束】
10

如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.

(1)请在图4中画出拼接后符合条件的平行四边形;

(2)请在图2中,计算裁剪的角度(即∠ABM的度数).

(1)作图见解析;(2)∠ABM=30°. 【解析】分析:(1)将图4中的△ABE向左平移30cm,△CDF向右平移30cm,拼成如图中的平行四边形,此平行四边形即为图2中的四边形ABCD. (2)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠AMB=30°. 本题解析:(1)如图: (2)由图2的包贴方法知:AB的长等于三棱柱的底边周长,∴AB=3...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网