题目内容
【题目】名闻遐迩的秦顺明前茶,成本每斤500元,某茶场今年春天试营销,每周的销售量y(斤)与销售单价x(元/斤)满足的关系如下表:
x(元/斤) | 550 | 600 | 650 | 680 | 700 |
y(斤) | 450 | 400 | 350 | 320 | 300 |
(1)请根据表中的数据猜想并写出y与x之间的函数关系式;
(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利w元,试写w与x之间的函数关系式,并求出茶场每周的最大利润.
(3)若该茶场每周获利不少于40000元,试确定销售单价x的取值范围.
【答案】(1)y=﹣x+1000;(2)w=﹣(x﹣750)2+62500,最大利润为60000元;(3)600≤x≤900
【解析】
(1)利用待定系数法求解可得一次函数解析式;
(2)根据“总利润=每斤的利润×周销售量”可得函数解析式,再利用二次函数的性质结合x的取值范围可得答案;
(3)求出w=40000时x的值,利用二次函数的性质可得.
解:(1)设y与x之间的函数关系式为y=kx+b,
根据题意,得:
,
解得:
,
则y=﹣x+1000;
(2)w=(x﹣500)(﹣x+1000)
=﹣x2+600x﹣500000,
=﹣(x﹣750)2+62500,
∵x﹣500≤500×40%,即x≤700,
∴当x=700时,w取得最大值,最大值为60000,即最大利润为60000元.
(3)当w=40000时,﹣(x﹣750)2+62500=40000,
解得:x=900或x=600,
∵a=﹣1,
∴当
时,600≤x≤900.
∴该茶场每周获利不少于40000元,销售单价x的取值范围为600≤x≤900.
【题目】某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:
收集数据:(单位:mm)
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183
整理数据:
频数 组别 | 165.5~170.5 | 170.5~175.5 | 175.5~180.5 | 180.5~185.5 | 185.5~190.5 | 190.5~195.5 |
甲车间 | 2 | 4 | 5 | 6 | 2 | 1 |
乙车间 | 1 | 2 | a | 6 | 2 | 0 |
分析数据:
车间 | 平均数 | 众数 | 中位数 | 方差 |
甲车间 | 180 | 185 | 180 | 43.1 |
乙车间 | 180 | 180 | 180 | 22.6 |
应用数据:
(1)计算甲车间样品的合格率;
(2)估计乙车间生产的8000个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.