题目内容

(1)如图①,在等边△ABC中,点M是BC边上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ACN=∠ABC.

【类比探究】

(2)如图②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ACN=∠ABC还成立吗?请说明理由.

【拓展延伸】

(3)如图③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

(1)答案见解析;(2)∠ACN=∠ABC还成立;(3)∠ABC=∠ACN. 【解析】试题分析:(1)利用SAS可证明△BAM≌△CAN,继而得出结论; (2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样. (3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CA...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网