题目内容

6.如图,AB是⊙O的直径,C为⊙O上一点,经过点C的直线与AB的延长线交于点D,连接AC,BC,∠BCD=∠CAB.E是⊙O上一点,弧CB=弧CE,连接AE并延长与DC的延长线交于点F.
(1)求证:DC是⊙O的切线;
(2)若⊙O的半径为3,sinD=$\frac{3}{5}$,求线段AF的长.

分析 (1)连接OC,由AB是⊙O的直径,得到∠ACB=90°,即∠1+∠3=90°.根据等腰三角形的性质得到∠1=∠2.得到∠DCB+∠3=90°.于是得到结论;
(2)根据三角函数的定义得到OD=5,AD=8.根据圆周角定理得到∠2=∠4.推出OC∥AF.根据相似三角形的性质即可得到结论.

解答 (1)证明:连接OC,BC,
∵AB是⊙O的直径,
∴∠ACB=90°,即∠1+∠3=90°.
∵OA=OC,
∴∠1=∠2.
∵∠DCB=∠BAC=∠1.
∴∠DCB+∠3=90°.
∴OC⊥DF.
∴DF是⊙O的切线;

(2)解:在Rt△OCD中,OC=3,sinD=$\frac{3}{5}$.
∴OD=5,AD=8.
∵$\widehat{CE}$=$\widehat{BC}$,
∴∠2=∠4.
∴∠1=∠4.
∴OC∥AF.
∴△DOC∽△DAF.
∴$\frac{OC}{AF}=\frac{OD}{AD}$.
∴AF=$\frac{24}{5}$.

点评 本题考查了切线的判定,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网