题目内容

3.已知$\left\{\begin{array}{l}{x=5}\\{y=6}\end{array}\right.$与$\left\{\begin{array}{l}{x=-3}\\{y=-10}\end{array}\right.$都是方程y=kx+b的解,
(1)求k,b的值;
(2)若y的值不大于0,求x的取值范围;
(3)若-1≤x<2,求y的取值范围.

分析 (1)把$\left\{\begin{array}{l}{x=5}\\{y=6}\end{array}\right.$与$\left\{\begin{array}{l}{x=-3}\\{y=-10}\end{array}\right.$代入y=kx+b即可求得.
(2)根据k、b的值求得方程,由y的值不大于0,得出2x-4≤0,解得x≤2;
(3)根据不等式的性质即可求得.

解答 解:(1)$\left\{\begin{array}{l}{x=5}\\{y=6}\end{array}\right.$与$\left\{\begin{array}{l}{x=-3}\\{y=-10}\end{array}\right.$代入y=kx+b,得:
$\left\{\begin{array}{l}{5k+b=5}\\{-3k+b=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=2}\\{b=-4}\end{array}\right.$;
(2)由(1)得y=2x-4,
∵y≤0,
∴2x-4≤0,解得x≤2;
(3)∵-1≤x<2,
∴-2≤2x<4,
∴-6≤2x-4<0,
即-6≤y<0.

点评 本题考查了解二元一次方程组,解一元一次不等式(组),依据不等式的性质把不等式进行变形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网