题目内容
14.已知:x=$\sqrt{5}$+2,y=$\sqrt{5}$-2,求x2+2xy-y2的值.分析 先将x2+2xy-y2变形为(x+y)(x-y)+2xy,再将x=$\sqrt{5}$+2,y=$\sqrt{5}$-2代入,根据平方差公式计算即可求解.
解答 解:∵x=$\sqrt{5}$+2,y=$\sqrt{5}$-2,
∴x2+2xy-y2
=(x+y)(x-y)+2xy
=($\sqrt{5}$+2+$\sqrt{5}$-2)×($\sqrt{5}$+2-$\sqrt{5}$+2)+2×($\sqrt{5}$+2)×($\sqrt{5}$-2)
=2$\sqrt{5}$×4+2×(5-4)
=8$\sqrt{5}$+2×1
=8$\sqrt{5}$+2.
点评 考查了分母有理化,关键是熟练掌握平方差公式,以及将算式变形为(x+y)(x-y)+2xy.
练习册系列答案
相关题目