题目内容
19.求不定方程2x4+x2y2+5y2=y4+10x2的全部整数解.分析 先将方程化成(2x4+x2y2-y4)-5(2x2-y2)=0,再把左边分解因式,从而得出(2x2-y2)=0或(x2+y2-5)=0,最后分别讨论求解即可.
解答 解:原方程可化为:(2x4+x2y2-y4)-5(2x2-y2)=0,
∴(2x2-y2)(x2+y2-5)=0,
∴(2x2-y2)=0或(x2+y2-5)=0,
①当2x2-y2=0时,
∵y=±$\sqrt{2}$x,
∵不存在满足此条件的整数x,y,
当x2+y2-5=0,即:x2+y2=5时,
∴$\left\{\begin{array}{l}{{x}^{2}=1}\\{{y}^{2}=4}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}=4}\\{{y}^{2}=1}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{x}_{1}=1}\\{{y}_{1}=2}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{2}=1}\\{{y}_{2}=-2}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{3}=-1}\\{{y}_{3}=2}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{4}=-1}\\{{y}_{4}=-2}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{5}=2}\\{{y}_{5}=1}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{6}=2}\\{{y}_{6}=-1}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{7}=-2}\\{{y}_{7}=1}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{8}=-2}\\{{y}_{8}=-1}\end{array}\right.$.
点评 此题是非一次不定方程(组),主要考查了高次多项式的分解因式,完全平方数的特点,整数解的特点,解本题的关键是分解因式.
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 1 | D. | $\frac{25}{4}$ |
| A. | 1 | B. | -1 | C. | 0 | D. | -$\frac{1}{2}$ |