题目内容


已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:

①b2﹣4ac>0;②abc<0;③m>2.

其中,正确结论的个数是(  )

  A. 0 B. 1 C. 2 D. 3

 


D

考点: 二次函数图象与系数的关系. 

专题: 压轴题;数形结合.

分析: 由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;

先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;

一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.

解答: 解:①∵二次函数y=ax2+bx+c与x轴有两个交点,

∴b2﹣4ac>0,故①正确;

②∵抛物线的开口向下,

∴a<0,

∵抛物线与y轴交于正半轴,

∴c>0,

∵对称轴x=﹣>0,

∴ab<0,

∵a<0,

∴b>0,

∴abc<0,故②正确;

③∵一元二次方程ax2+bx+c﹣m=0没有实数根,

∴y=ax2+bx+c和y=m没有交点,

由图可得,m>2,故③正确.

故选:D.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网