题目内容

如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN周长最小时,∠AMN+∠ANM的度数为
 
考点:轴对称-最短路线问题
专题:
分析:取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,根据轴对称的性质可得AM=PM,AN=QN,然后求出△AMN周长=PQ,根据轴对称确定最短路线问题,PQ的长度即为△AMN的周长最小值,根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AMN=2∠P,∠ANM=2∠Q,然后求解即可.
解答:解:如图,取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,
则AM=PM,AN=QN,
所以,∠P=∠PAM,∠Q=∠QAN,
所以,△AMN周长=AM+MN+AN=PM+MN+QN=PQ,
由轴对称确定最短路线,PQ的长度即为△AMN的周长最小值,
∵∠BAE=125°,
∴∠P+∠Q=180°-125°=55°,
∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,
∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.
故答案为:110°.
点评:本题考查了利用轴对称确定最短路线问题,等边对等角的性质,三角形的内角和定理,确定出点M、N的位置是解题的关键,作出图形更形象直观.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网