题目内容
在实践中学习:
(1)如图1所示:已知AB∥CD,∠ABD=115°,根据 可得出:∠BDC的度数是 .
(2)如图2所示:已知AB∥CD,∠ABC=25°,∠EDC=40°,求∠BED的度数.
解:过点E作EF∥AB
∵AB∥CD(已知)∴EF∥CD
∵EF∥AB,EF∥CD
∴∠ABC=∠BEF,∠EDC=∠DEF
∴∠BEF=25°,∠DEF=40°
即∠BED= .
(3)如图3所示:已知MA∥NC,试确定∠A、∠B、∠C和∠E、∠F的关系,并说明理由.
(4)如图4所示:已知AB∥CD,∠ABE=α,∠FCD=β,∠CFE=γ,且BE⊥EF,试确定α、β、γ的关系,请说明理由.

(1)如图1所示:已知AB∥CD,∠ABD=115°,根据
(2)如图2所示:已知AB∥CD,∠ABC=25°,∠EDC=40°,求∠BED的度数.
解:过点E作EF∥AB
∵AB∥CD(已知)∴EF∥CD
∵EF∥AB,EF∥CD
∴∠ABC=∠BEF,∠EDC=∠DEF
∴∠BEF=25°,∠DEF=40°
即∠BED=
(3)如图3所示:已知MA∥NC,试确定∠A、∠B、∠C和∠E、∠F的关系,并说明理由.
(4)如图4所示:已知AB∥CD,∠ABE=α,∠FCD=β,∠CFE=γ,且BE⊥EF,试确定α、β、γ的关系,请说明理由.
考点:平行线的判定与性质
专题:
分析:(1)根据两直线平行,同旁内角互补求解;
(2)根据两直线平行,内错角相等求解;
(3)作BH∥AM,如图3,由(2)的结论得到∠E=∠1+∠A,∠F=∠2+∠C,把两式相加得到∠E+∠F=∠1+∠A+∠2+∠C=∠A+∠B+∠C;
(4)作BP∥AB,如图4,由(2)的结论得∠ABE+∠EFP=∠BEF,而∠PFC=∠FCD,所以∠EFP=90°-α,∠PFC=β,把两式相加得到γ=90°-α+β.
(2)根据两直线平行,内错角相等求解;
(3)作BH∥AM,如图3,由(2)的结论得到∠E=∠1+∠A,∠F=∠2+∠C,把两式相加得到∠E+∠F=∠1+∠A+∠2+∠C=∠A+∠B+∠C;
(4)作BP∥AB,如图4,由(2)的结论得∠ABE+∠EFP=∠BEF,而∠PFC=∠FCD,所以∠EFP=90°-α,∠PFC=β,把两式相加得到γ=90°-α+β.
解答:解:(1)∵AB∥CD,
∴∠ABD+∠BDC=180°,
∴∠BDC=180°-115°=65°;
(2)过点E作EF∥AB
∵AB∥CD(已知)∴EF∥CD
∵EF∥AB,EF∥CD
∴∠ABC=∠BEF,∠EDC=∠DEF,
∴∠BEF=25°,∠DEF=40°
即∠BED=65°;
故答案为两直线平行,同旁内角互补,65°;两直线平行,内错角相等;65°;
(3)
∠A、∠B、∠C和∠E、∠F的关系为∠E+∠F=∠A+∠B+∠C.理由如下:
作BH∥AM,如图3,
由(2)的结论得到∠E=∠1+∠A,∠F=∠2+∠C,
∴∠E+∠F=∠1+∠A+∠2+∠C=∠A+∠B+∠C;
(4)γ+α=90°+β.理由如下:
作BP∥AB,如图4,
由(2)的结论得∠ABE+∠EFP=∠BEF,
而∠PFC=∠FCD,
∴∠EFP=90°-α,∠PFC=β,
∴∠EFP+∠PFC=90°-α+β,
∴γ=90°-α+β,
即γ+α=90°+β.
∴∠ABD+∠BDC=180°,
∴∠BDC=180°-115°=65°;
(2)过点E作EF∥AB
∵AB∥CD(已知)∴EF∥CD
∵EF∥AB,EF∥CD
∴∠ABC=∠BEF,∠EDC=∠DEF,
∴∠BEF=25°,∠DEF=40°
即∠BED=65°;
故答案为两直线平行,同旁内角互补,65°;两直线平行,内错角相等;65°;
(3)
作BH∥AM,如图3,
由(2)的结论得到∠E=∠1+∠A,∠F=∠2+∠C,
∴∠E+∠F=∠1+∠A+∠2+∠C=∠A+∠B+∠C;
(4)γ+α=90°+β.理由如下:
作BP∥AB,如图4,
由(2)的结论得∠ABE+∠EFP=∠BEF,
而∠PFC=∠FCD,
∴∠EFP=90°-α,∠PFC=β,
∴∠EFP+∠PFC=90°-α+β,
∴γ=90°-α+β,
即γ+α=90°+β.
点评:本题考查了平行线的判定与性质:同旁内角互补,两直线平行;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.
练习册系列答案
相关题目