题目内容
a,b,c为非负实数,a2+b2+c2=1,a(
+
)+b(
+
)+c(
+
) =-3,求a+b+c的值.
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
考点:因式分解
专题:
分析:首先将原式变形,进而得出a(
+
+
)+b(
+
+
)+c(
+
+
)=0,得出a+b+c=0或bc+ac+ab=0.进而代入求出答案.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
解答:解:将a(
+
)+b(
+
)+c(
+
) =-3变形如下,
a(
+
)+1+b(
+
)+1+c(
+
)+1=0,
即a(
+
+
)+b(
+
+
)+c(
+
+
)=0,
∴(a+b+c)(
+
+
)=0,
∴(a+b+c)•
=0,
∴a+b+c=0(舍)或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,
∴a+b+c=±1.
∴a+b+c的值为1,-1.
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
a(
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
即a(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
∴(a+b+c)(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
∴(a+b+c)•
| bc+ac+ab |
| abc |
∴a+b+c=0(舍)或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,
∴a+b+c=±1.
∴a+b+c的值为1,-1.
点评:此题主要考查了因式分解的应用,正确将已知变形得出(a+b+c)(
+
+
)=0是解题关键.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
练习册系列答案
相关题目