题目内容
14.(1)画出△ABC关于直线OM对称的△A1B1C1;
(2)画出△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2.
分析 (1)根据轴对称的性质,作出各对应点即可得出图象;
(2)将A,B,C,沿点O顺时针旋转90度即可得出对应点,画出图象即可.
解答 解:(1)如图,△A1B1C1即为所求作三角形;
(2)如图,△A2B2C2即为所求作三角形.![]()
点评 此题主要考查了轴对称图形性质以及图形的旋转和轴对称变换,正确根据已知找出对应点进而画出图象是解题关键.
练习册系列答案
相关题目
5.下列各组数中,可以构成勾股数的是( )
| A. | 13,16,19 | B. | $\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$ | C. | 18,24,36 | D. | 12,35,37 |
2.下列计算中,不正确的是( )
| A. | -2x+3x=x | B. | 2xy2•(-x)=-2x2y2 | C. | (-2x2y)3=-6x2y3 | D. | 6xy2÷2xy=3y |
19.一次函数y=x-1的图象经过平移后经过点(-4,2),此时函数图象不经过( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
3.下列各命题的逆命题成立的是( )
| A. | 全等三角形的对应角相等 | |
| B. | 如果两个数相等,那么它们的绝对值相等 | |
| C. | 对角线互相平分的四边形是平行四边形 | |
| D. | 如果两个角都是90°,那么这两个角相等 |