ÌâÄ¿ÄÚÈÝ
4£®ÈôÒ»¸öÈý½ÇÐεÄÈýÌõ±ßÂú×㣺һ±ßµÈÓÚÆäËûÁ½±ßµÄƽ¾ùÊý£¬ÎÒÃdzÆÕâ¸öÈý½ÇÐÎΪ¡°Æ½¾ùÊýÈý½ÇÐΡ±£®£¨1£©ÏÂÁи÷×éÊý·Ö±ðÊÇÈý½ÇÐεÄÈýÌõ±ß³¤£º
¢Ù5£¬7£¬5£» ¢Ú3£¬3£¬3£» ¢Û6£¬8£¬4£» ¢Ü1£¬$\sqrt{3}$£¬2£®
ÆäÖÐÄܹ¹³É¡°Æ½¾ùÊýÈý½ÇÐΡ±µÄÊÇ¢Ú¢Û£»£¨ÌîдÐòºÅ£©
£¨2£©ÒÑÖª¡÷ABCµÄÈýÌõ±ß³¤·Ö±ðΪa£¬b£¬c£¬ÇÒa£¼b£¼c£®Èô¡÷ABC¼ÈÊÇ¡°Æ½¾ùÊýÈý½ÇÐΡ±£¬ÓÖÊÇÖ±½ÇÈý½ÇÐΣ¬Ôò$\frac{a}{b}$µÄֵΪ$\frac{3}{4}$£®
·ÖÎö £¨1£©¸ù¾Ýƽ¾ùÊýÈý½ÇÐε͍ÒåÑéÖ¤¼´¿ÉµÃÎÊÌâ´ð°¸£»
£¨2£©ÓÉ¡÷ABCÊÇ¡°Æ½¾ùÊýÈý½ÇÐΡ±£¬¿ÉµÃb=$\frac{a+c}{2}$£¬ÓÖÊÇÖ±½ÇÈý½ÇÐÎÓɹ´¹É¶¨Àí¿ÉµÃ£ºa2+b2=c2£¬½ø¶ø¿ÉÇó³ö$\frac{a}{b}$µÄÖµ£®
½â´ð ½â£º£¨1£©ÓÉ¡°Æ½¾ùÊýÈý½ÇÐΡ±µÄ¸ÅÄî¿ÉÖª¢ÚÖÐ3=$\frac{3+3}{2}$Âú×ãÌõ¼þ£»¢ÛÖÐ6=$\frac{8+4}{2}$Âú×ãÌõ¼þ£»ÆäËû²»·ûºÏÌâÒ⣬
¹Ê´ð°¸Îª£º¢Ú¢Û
£¨2£©¡ß¡÷ABCÊÇ¡°Æ½¾ùÊýÈý½ÇÐΡ±£¬ÇÒa£¼b£¼c£¬
¡àb=$\frac{a+c}{2}$¢Ù£¬
¡ß¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ¬
¡àa2+b2=c2¢Ú£¬
ÓÉ¢Ù¢Ú¿ÉÖª£º$\frac{a}{b}$=$\frac{3}{4}$£¬
¹Ê´ð°¸Îª£º$\frac{3}{4}$£®
µãÆÀ ±¾Ì⿼²éÁ˹´¹É¶¨ÀíµÄÔËÓÃÒÔ¼°¶Ôж¨ÒåÌâÄ¿µÄ½â´ð£¬ÊÇÖп¼³£¼ûÌâÐÍ£¬´ËÀàÌâÄ¿ÄѶȲ»´ó£¬½âÌâµÄ¹Ø¼üÊÇÕýÈ·Àí½âÌâÄ¿¸ø³öµÄ£º¡°Ð¶¨Ò塱£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®
ʵÊýa£¬bÔÚÊýÖáÉϵÄλÖÃÈçͼËùʾ£¬Ôò»¯¼ò$\sqrt{£¨a-b£©^{2}}$-$\sqrt{£¨1-a£©^{2}}$-$\sqrt{{b}^{2}}$½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | -2a-1 | B£® | -1 | C£® | 2b-1 | D£® | 1 |
16£®Èô$\sqrt{b}$=2£¬$\root{3}{a}$=-3£¬Ôòb-aµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 31 | B£® | -31 | C£® | 29 | D£® | -30 |
13£®ÒÑÖªA£¨1£¬y1£©¡¢B£¨2£¬y2£©¡¢C£¨-3£¬y3£©¶¼ÔÚ·´±ÈÀýº¯Êýy=$\frac{2}{x}$µÄͼÏóÉÏ£¬Ôòy1¡¢y2¡¢y3µÄ´óС¹ØÏµµÄÊÇ£¨¡¡¡¡£©
| A£® | y2£¾y1£¾y3 | B£® | y1£¾y2£¾y3 | C£® | y3£¾y2£¾y1 | D£® | y1£¾y3£¾y2 |