题目内容
在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式为___________.
如图,AB为⊙O的直径,CD为⊙O的弦,∠ABD=53°,则∠BCD为( )
A. 37° B. 47° C. 45° D. 53°
解方程:(1) x(2x-5)=4x-10 (2) x2-4x-7=0
如图,在平面直角坐标系中,直线l1过点B(0,-1),且平行于x轴,直线l2过点C(0,-2),交直线l1于点D,,点A与点B关于x轴对称,点P为抛物线上一动点,PQ⊥l1于点Q.
(1)求直线l2的函数关系式;
(2)连接PA,AQ,OD,是否存在点P,使△PAQ与△OCD相似,若存在,求出点P坐标;若不存在,请说明理由;
(3)当点P到直线l1与直线l2的距离之和最短时,求出点P坐标及最短距离.
不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别。随机摸出一个小球后,放回并摇匀,再随机摸出一个.求两次都摸到红色小球的概率.
已知点P(1,﹣3),则点P关于原点对称的点的坐标是__.
抛物线y=﹣3(x﹣1)2+2的对称轴是( )
A. x=1 B. x=﹣1 C. x=2 D. x=﹣2
为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比( )
A. 增加6m2 B. 减少6m2 C. 增加9m2 D. 减少9m2
解下列不等式.
(1) 4(x﹣1)+3≥3x (2)