题目内容
解方程:(1) x(2x-5)=4x-10 (2) x2-4x-7=0
有人用元买了一匹马,又以元的价钱卖了出去,然后,他再用元把它买回来,最后以元的价格卖出,在这桩马的交易中,他( )
A. 收支平衡 B. 赚了元 C. 赚了元 D. 赚了元
有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),以小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在反比例函数上的概率为__________.
如图,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽为xm,则可列方程为 ( )
A. 100×80-100x-80x=7644 B. (100-x)(80-x)+x2=7644
C. (100-x)(80-x)=7644 D. 100x+80x-x2=7644
2016年里约,中国女排力克塞尔维亚夺得冠军,女排姑娘们平常刻苦训练,关键时刻为国争光.如图,训练排球场的长度OD为15米,位于排球场中线处网球的高度AB为2.5米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞出.当排球运行至离点O的水平距离OE为5米时,到达最高点G.将排球看成一个点,它运动的轨迹是抛物线,建立如图所示的平面直角坐标系
(1) 当球上升的最大高度为3米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式(不要求写自变量x的取值范围)
(2) 在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为2.7米,问这次她是否可以拦网成功?请通过计算说明
(3) 若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)
已知方程x2+kx-2=0的一个根是1,则k的值是___________,另一个根是___________
将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为( )
A. y=(x+1)2+2 B. y=(x-1)2+2 C. y=(x-1)2-2 D. y=(x+1)2-2
在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式为___________.
试证明:不论为何值,方程总有两个不相等的实数根。