题目内容

如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E顺时针旋转180°,点D到了点F的位置,则S△ADE:S?BCFD是(  )
A、1:4B、1:3
C、1:2D、1:1
考点:图形的剪拼
专题:
分析:由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S?BCED=1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S?BCFD的比值.
解答:解:∵DE是△ABC中位线,
∴DE∥BC,
∴△ADE∽△ABC,
∴AD:AB=DE:BC=1:2,
∴S△ADE=:S△ABC=1:4,
∴S△ADE:S?BCED=1:3,
∵将△ADE绕着点E顺时针旋转180°得到△CEF,
∴△ADE≌△CEF,
∴S△ADE=S△CEF
∴S△ADE:S?BCFD=1:4,
故选A.
点评:此题主要考查了图形的剪拼,以及相似三角形的判定和性质、旋转的性质,题目的综合性较强,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网