题目内容

某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):
           项目

人员          
阅读
思维
表达
甲           938673
乙           958179
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?
(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.
考点:频数(率)分布直方图,算术平均数,加权平均数
专题:图表型
分析:(1)根据平均数的计算公式分别进行计算即可;
(2)根据加权平均数的计算公式分别进行解答即可;
(3)由直方图知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,再根据x=85.5分,得出甲在该组,甲一定能被录用,在80≤x<85这一组内有10人,仅有1人能被录用,而x=84.8分,在这一段内不一定是最高分,得出乙不一定能被录用;最后根据频率=
频数
总数
进行计算,即可求出本次招聘人才的录用率.
解答:解:(1)∵甲的平均成绩是:x=
93+86+73
3
=84(分),
乙的平均成绩为:x=
95+81+79
3
=85(分),
∴x>x
∴乙将被录用;

(2)根据题意得:
x=
93×3+86×5+73×2
3+5+2
=85.5(分),
x=
95×3+81×5+79×2
3+5+2
=84.8(分);
∴x>x
∴甲将被录用;

(3)甲一定被录用,而乙不一定能被录用,理由如下:
由直方图知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,又因为x=85.5分,显然甲在该组,所以甲一定能被录用;
在80≤x<85这一组内有10人,仅有1人能被录用,而x=84.8分,在这一段内不一定是最高分,所以乙不一定能被录用;
由直方图知,应聘人数共有50人,录用人数为8人,
所以本次招聘人才的录用率为:
8
50
=16%.
点评:此题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网