ÌâÄ¿ÄÚÈÝ
15£®Çë½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÇóÏß¶ÎABµÄ³¤£»
£¨2£©µãCÊÇÖ±ÏßABÉÏÒ»µã£¬ÇÒ3S¡÷OBC=2S¡÷OAC£¬ÇóÖ±ÏßOCµÄº¯Êý½âÎöʽ£»
£¨3£©ÔÚ£¨2£©Ìõ¼þÏ£¬µãCÊÇÏß¶ÎABÉϵĵ㣬ÔÚÖ±ÏßABÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹ÒÔµãO¡¢C¡¢PΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Ê×ÏȽⷽ³ÌÇóµÃOAºÍOBµÄ³¤£¬È»ºóÀûÓù´¹É¶¨ÀíÇóµÃABµÄ³¤¼´¿É£»
£¨2£©¸ù¾ÝµãAºÍµãBµÄ×ø±êµÃ³öÖ±ÏßABµÄ½âÎöʽ£¬ÔÙÉè³öµãCµÄ×ø±ê£¬¸ù¾ÝÃæ»ýµÈʽ½â´ð¼´¿É£»
£¨3£©¸ù¾ÝÖ±½ÇÈý½ÇÐεóöµãPµÄ×ø±ê¼´¿É£®
½â´ð £¨1£©½â£º·½³Ìx2-14x+48=0±äÐÎΪ£º
£¨x-6£©£¨x-8£©=0£¬
½âµÃ£ºx1=6£¬x2=8£¬
¡ßOA£¼OB£¬
¡àOA=6£¬OB=8£¬
¡àAB=$\sqrt{O{A}^{2}+O{B}^{2}}=10$£¬
£¨2£©ÉèÖ±ÏßABµÄ½âÎöʽΪ£ºy=kx+b£¬
°ÑB£¨-8£¬0£©£¬A£¨0£¬6£©´úÈë½âÎöʽÖУ¬µÃ£º$\left\{\begin{array}{l}{-8k+b=0}\\{b=6}\end{array}\right.$£¬
½âµÃ£ºk=$\frac{3}{4}$£¬b=6£¬
ËùÒÔÖ±ÏߵĽâÎöʽÊÇy=$\frac{3}{4}$x+6£»
ËùÒÔµãCµÄ×ø±êΪ£¨x£¬$\frac{3}{4}x+6$£©£¬
ÒòΪ3S¡÷OBC=2S¡÷OAC£¬
ËùÒԿɵÃS¡÷OAC=6£¨¡Àx£©¡Á$\frac{1}{2}$=¡À3x
S¡÷OBC=8£¨$\frac{3}{4}x+6$£©•$\frac{1}{2}$=¡À£¨3x+24£©
µ±S¡÷OBC=2S¡÷OACʱ£¬x=$\frac{24}{5}$»òx=-24
¡àLOC£ºy1=-$\frac{1}{2}$x£¬
¿ÉµÃ½âÎöʽΪ£ºy2=$\frac{1}{2}$x£»
£¨3£©µ±µãCµÄ×ø±êΪ£¨-24£¬-12£©Ê±£¬Ê¹µãO¡¢C¡¢PΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ¬
Ôò¿ÉµÃµãPµÄ×ø±êΪ£¨$\frac{24}{5}£¬\frac{48}{5}$£©£»
µ±µãCµÄ×ø±êΪ£¨$\frac{24}{5}£¬\frac{48}{5}$£©Ê±£¬Ê¹µãO¡¢C¡¢PΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ¬
Ôò¿ÉµÃµãPµÄ×ø±êΪ£¨$-\frac{72}{15}£¬\frac{32}{5}$£©£®
×ÛÉÏËùÊö£¬µãPµÄ×ø±êΪ£¨$\frac{24}{5}£¬\frac{48}{5}$£©£¨$-\frac{72}{15}£¬\frac{32}{5}$£©£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏ֪ʶ£¬ÌâÄ¿ÖнøÐÐÁ˵ãµÄ×ø±êºÍÈý½ÇÐεÄÃæ»ýµÄת»¯£¬ÕâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬ÄѶÈÖÐµÈÆ«ÉÏ£®
| A£® | a£¾5»òa£¼-2 | B£® | -2¡Üa¡Ü5 | C£® | -2£¼a£¼5 | D£® | a¡Ý5»òa¡Ü-2 |