题目内容

9.如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).将△ABC绕坐标原点O逆时针旋转90°,得到△A′B′C′,画出△A′B′C′.并计算点A旋转经过的路径长度.

分析 利用网格特点和旋转的性质画出点A、B、C的对应点A′、B′、C′,从而得到△A′B′C′,由于点A旋转经过的路径是以点O为圆心,OA为半径,圆心角为90°的弧,所以利用弧长公式可计算出点A旋转经过的路径长度.

解答 解:如图,△A′B′C′为所作;

OA=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
所以A旋转经过的路径长度=$\frac{90•π•\sqrt{13}}{180}$=$\frac{\sqrt{13}}{2}$π.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网