题目内容

17.如图,在?ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S?AEPH=4.

分析 由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH=S四边形PFCG.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由已知条件即可得出答案.

解答 解:∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP
同理可得S△PHD=S△DFP,S△ABD=S△CDB
∴S△ABD-S△PEB-S△PHD=S△CDB-S△BGP-S△DFP
即S四边形AEPH=S四边形PFCG
∵CG=2BG,S△BPG=1,
∴S四边形AEPH=S四边形PFCG=4×1=4;
故答案为:4.

点评 本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行?四边形为平行四边形,②两组对边分别相等?四边形为平行四边形,③一组对边平行且相等?四边形为平行四边形,④两组对角分别相等?四边形为平行四边形,⑤对角线互相平分?四边形为平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网