题目内容
选用适当的方法解下列方程:
(1)4(y-1)2=36
(2)x2-3x-2=0.
(3)(2x+1)2-5(2x+1)+6=0
(4)3x2-6x-1=0 (配方法)
(5)化简求值:(1+
)÷
,x=
+1.
(1)4(y-1)2=36
(2)x2-3x-2=0.
(3)(2x+1)2-5(2x+1)+6=0
(4)3x2-6x-1=0 (配方法)
(5)化简求值:(1+
| 1 |
| x |
| x2-1 |
| x |
| 2 |
分析:(1)开方得出2(y-1)=±6,求出方程的解即可;
(2)求出b2-4ac的值,代入公式x=
求出即可;
(3)分解因式得出(2x+1-3)(2x+1-2)=0,推出2x+1-3=0,2x+1-2=0,求出方程的解即可;
(4)移项后配方得出x2-2x+1=
+1,推出(x-1)2=
,得出方程x-1=±
,求出方程的解即可;
(5)先算括号内的加法,同时把除法变成乘法,再进行约分得出最简分式,最后代入求出即可.
(2)求出b2-4ac的值,代入公式x=
-b±
| ||
| 2a |
(3)分解因式得出(2x+1-3)(2x+1-2)=0,推出2x+1-3=0,2x+1-2=0,求出方程的解即可;
(4)移项后配方得出x2-2x+1=
| 1 |
| 3 |
| 4 |
| 3 |
2
| ||
| 3 |
(5)先算括号内的加法,同时把除法变成乘法,再进行约分得出最简分式,最后代入求出即可.
解答:解:(1)4(y-1)2=36,
2(y-1)=±6,
y1=4,y2=-2.
(2)x2-3x-2=0,
b2-4ac=(-3)2-4×1×(-2)=17,
x=
,
x1=
,x2=
;
(3)(2x+1)2-5(2x+1)+6=0,
(2x+1-3)(2x+1-2)=0,
2x+1-3=0,2x+1-2=0,
x1=1,x2=
.
(4)3x2-6x-1=0,
x2-2x=
,
x2-2x+1=
+1,
(x-1)2=
,
x-1=±
,
x1=
,x2=
.
(5)(1+
)÷
=
×
=
,
当x=
+1时,原式=
=
.
2(y-1)=±6,
y1=4,y2=-2.
(2)x2-3x-2=0,
b2-4ac=(-3)2-4×1×(-2)=17,
x=
3±
| ||
| 2×1 |
x1=
3+
| ||
| 2 |
3-
| ||
| 2 |
(3)(2x+1)2-5(2x+1)+6=0,
(2x+1-3)(2x+1-2)=0,
2x+1-3=0,2x+1-2=0,
x1=1,x2=
| 1 |
| 2 |
(4)3x2-6x-1=0,
x2-2x=
| 1 |
| 3 |
x2-2x+1=
| 1 |
| 3 |
(x-1)2=
| 4 |
| 3 |
x-1=±
2
| ||
| 3 |
x1=
3+2
| ||
| 3 |
3-2
| ||
| 3 |
(5)(1+
| 1 |
| x |
| x2-1 |
| x |
=
| x+1 |
| x |
| x |
| (x+1)(x-1) |
=
| 1 |
| x-1 |
当x=
| 2 |
| 1 | ||
|
| ||
| 2 |
点评:本题考查了解一元二次方程和分式的混合运算,解方程的关键是吧一元二次方程转化成解一元一次方程,解(5)的关键是正确进行化简,题目都比较好,难度适中.
练习册系列答案
相关题目