题目内容

5.已知x、y、z为有理数,且|x+y+z+1|=x+y-z-2,则$({x+y-\frac{1}{2}})({2z+3})$=0.

分析 根据绝对值的意义得到|x+y+z+1|=x+y+z+1或|x+y+z+1|=-(x+y+z+1),则x+y+z+1=x+y-z-2或-(x+y+z+1)=x+y-z-2,解得z=-$\frac{3}{2}$或x+y=$\frac{1}{2}$,然后把z=-$\frac{3}{2}$或x+y=$\frac{1}{2}$分别代入$({x+y-\frac{1}{2}})({2z+3})$中计算即可.

解答 解:∵|x+y+z+1|=x+y+z+1或|x+y+z+1|=-(x+y+z+1),
∴x+y+z+1=x+y-z-2或-(x+y+z+1)=x+y-z-2,
∴z=-$\frac{3}{2}$或x+y=$\frac{1}{2}$,
当z=-$\frac{3}{2}$时,$({x+y-\frac{1}{2}})({2z+3})$=(x+y-$\frac{1}{2}$)[2×(-$\frac{3}{2}$)+3]=0;
当x+y=$\frac{1}{2}$时,$({x+y-\frac{1}{2}})({2z+3})$=($\frac{1}{2}$-$\frac{1}{2}$)(2z+3)=0,
综上所述,$({x+y-\frac{1}{2}})({2z+3})$的值为0.
故答案为0.

点评 本题考查了绝对值:当a是正数时,a的绝对值是它本身a; 当a是负数时,a的绝对值是它的相反数-a; 当a是零时,a的绝对值是零.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网