ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-£¨2k+3£©x+k2+3k+2=0£¨1£©ÊÔÅжÏÉÏÊö·½³Ì¸ùµÄÇé¿ö£®
£¨2£©ÈôÒÔÉÏÊö·½³ÌµÄÁ½¸ö¸ùΪºá×ø±ê¡¢×Ý×ø±êµÄµãÇ¡ÔÚ·´±ÈÀýº¯Êýy=$\frac{m}{x}$µÄͼÏóÉÏ£¬ÇóÂú×ãÌõ¼þµÄmµÄ×îСֵ£®
£¨3£©ÒÑÖª¡÷ABCµÄÁ½±ßAB¡¢ACµÄ³¤ÊǹØÓÚÉÏÊö·½³ÌµÄÁ½¸öʵÊý¸ù£¬BCµÄ³¤Îª5£®
¢Ùµ±kΪºÎֵʱ£¬¡÷ABCÊÇÒÔBCΪб±ßµÄÖ±½ÇÈý½ÇÐΣ¿
¢Úµ±kΪºÎֵʱ£¬¡÷ABCÊǵÈÑüÈý½ÇÐΣ¿ÇëÇó³ö´Ëʱ¡÷ABCµÄÖܳ¤£®
·ÖÎö £¨1£©±íʾ³ö·½³Ì¸ùµÄÅбðʽ£¬¸ù¾Ý¸ùµÄÅбðʽµÄÕý¸º¼´¿ÉÈ·¶¨³ö·½³Ì¸ùµÄÇé¿ö£»
£¨2£©Éè·½³ÌµÄÁ½¸ùΪx1£¬x2£¬¸ù¾ÝÌâÒâµÃm=x1x2£¬ÔÙÀûÓøùÓëϵÊý¹ØÏµ±íʾ³öx1x2£¬Áгöm¹ØÓÚkµÄ¶þ´Îº¯Êý½âÎöʽ£¬ÀûÓöþ´Îº¯ÊýÐÔÖÊÇó³ömµÄ×îСֵ¼´¿É£»
£¨3£©¢Ù±íʾ³ö·½³ÌµÄÁ½½â£¬¼´ÎªABÓëAC£¬ÀûÓù´¹É¶¨ÀíÁгö¹ØÓÚkµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿ÉµÃµ½kµÄÖµ£»
¢ÚÓÉ£¨1£©µÃµ½AB¡ÙAC£¬·ÖAC=BCÓëAB=BCÁ½ÖÖÇé¿öÇó³ökµÄÖµ£¬²¢Çó³öÈý½ÇÐÎÖܳ¤¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉ·½³Ìx2-£¨2k+3£©x+k2+3k+2=0£¬µÃb2-4ac=£¨2k+3£©2-4£¨k2+3k+2£©=4k2+12k+9-4k2-12k-8=1£¾0£¬
Ôò·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»
£¨2£©Éè·½³Ìx2-£¨2k+3£©x+k2+3k+2=0µÄÁ½¸ö¸ùΪx1£¬x2£¬¸ù¾ÝÌâÒâµÃm=x1x2£¬
ÓÖÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃx1x2=k2+3k+2£¬
¡àm=k2+3k+2=£¨k+$\frac{3}{2}$£©2-$\frac{1}{4}$£¬
Ôòµ±k=-$\frac{3}{2}$ʱ£¬mÈ¡µÃ×îСֵ-$\frac{1}{4}$£»
£¨3£©¢Ùx1=k+1£¬x2=k+2£¬
²»·ÁÉèAB=k+1£¬AC=k+2£¬
µ±Ð±±ßBC=5ʱ£¬ÓÐAB2+AC2=BC2£¬¼´£¨k+1£©2+£¨k+2£©2=25£¬
½âµÃk1=2£¬k2=-5£¨ÉáÈ¥£©£¬
¡àµ±k=2ʱ£¬¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»
¢Úµ±AB=k+1£¬AC=k+2£¬BC=5£¬ÓÉ£¨1£©ÖªAB¡ÙAC£¬
¹ÊÓÐÁ½ÖÖÇé¿ö£º
£¨i£©µ±AC=BC=5ʱ£¬k+2=5£¬¼´k=3£¬´ËʱÈý½ÇÐÎÖܳ¤Îª4+5+5=14£»
£¨ii£©µ±AB=BC=5ʱ£¬k+1=5£¬¼´k=4£¬´ËʱÈý½ÇÐÎÖܳ¤Îª5+5+6=16£®
µãÆÀ ´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶÓУºÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµ£¬¸ùµÄÇé¿öÅжϣ¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¹´¹É¶¨Àí£¬ÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®