题目内容

8.在△ABC中,AC=$\sqrt{14}$,BC=5$\sqrt{2}$,AB=6,则△ABC是直角三角形.

分析 欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.

解答 解:在△ABC中,AC=$\sqrt{14}$,BC=5$\sqrt{2}$,AB=6,
∵62+($\sqrt{14}$)2=(5$\sqrt{2}$)2
∴△ABC是直角三角形.
故答案为:直角.

点评 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网