题目内容

8.在Rt△ABC中,∠C=90°,cosB=$\frac{3}{5}$,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么$\frac{B′D}{CD}$等于(  )
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{7}{20}$

分析 如图,作辅助线;首先求出BM的长度,进而求出AC、BB′的长度;证明△A′DC∽△ADB′,得$\frac{B′D}{CD}=\frac{AB′}{A′C}$=$\frac{7}{20}$,即可解决问题.

解答 解:如图,过点C作CM⊥AB于点M,
∵∠C=90°,cosB=$\frac{3}{5}$,
∴$\frac{BC}{AB}=\frac{3}{5}$;设BC=3λ,则AB=5λ,
由勾股定理得AC=4λ,
由射影定理得:BC2=BM•AB,
∴BM=$\frac{9}{5}λ$.由旋转变换的性质得:
CB=CB′,A′C=AC=4λ,∠A′=∠A;而CM⊥BB′,
∴B′M=BM,AB′=5λ-$\frac{18}{5}λ$=$\frac{7}{5}λ$,
∵∠A′=∠A,∠A′DC=∠ADB′,
∴△A′DC∽△ADB′,
∴$\frac{B′D}{CD}=\frac{AB′}{A′C}$=$\frac{7}{20}$,
故选D.

点评 该题主要考查了旋转变换的性质、勾股定理、相似三角形的判定等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用旋转变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网