题目内容
10.解下列方程组:(1)$\left\{\begin{array}{l}{y=2x-1}\\{3x+2y=5}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-y=-4}\\{4x-5y=-23}\end{array}\right.$.
分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{y=2x-1①}\\{3x+2y=5②}\end{array}\right.$,
把①代入②得:3x+4x-2=5,即x=1,
把x=1代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-y=-4①}\\{4x-5y=-23②}\end{array}\right.$,
①×5-②得:6x=3,即x=0.5,
把x=0.5代入①得:y=5,
则方程组的解为$\left\{\begin{array}{l}{x=0.5}\\{y=5}\end{array}\right.$.
点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
20.若x>y,则下列式子中错误的是( )
| A. | x-3>y-3 | B. | x+3>y+3 | C. | $\frac{1}{3}x>\frac{1}{3}y$ | D. | -3x>-3y |