题目内容
9.证明下列恒等式:(1)(a2-b2)(x2-y2)=(ax+by)2-(bx+ay)2
(2)(x+y)3-(x-y)2(x+y)=4xy(x+y)
分析 (1)分别把左边和右边分解因式,即可得出答案;
(2)把等式的左边分解因式,即可得出答案.
解答 解:(1)左边=(ax+by+bx+ay)(ax+by-bx-ay)
=[a(x+y)+b(x+y)][x(a-b)-y(a-b)]
=(x+y)(a+b)(x-y)(a-b),
右边=(a+b)(a-b)(x+y)(x-y),
即(a2-b2)(x2-y2)=(ax+by)2-(bx+ay)2;
(2)(x+y)3-(x-y)2(x+y)
=(x+y)[(x+y)2-(x-y)2]
=(x+y)[(x+y)+(x-y)][(x+y)-(x-y)]
=(x+y)•2x•2y
=4xy(x+y),
即(x+y)3-(x-y)2(x+y)=4xy(x+y).
点评 本题考查了分解因式的应用,能正确分解因式是解此题的关键.
练习册系列答案
相关题目
1.已知$\sqrt{x+3}$+|y-2|=0,那么x+y的值是( )
| A. | 1 | B. | -1 | C. | -3 | D. | 2 |