题目内容
8.一元一次不等式2(x+1)≥4的解在数轴上表示为( )| A. | B. | C. | D. |
分析 首先根据解一元一次不等式的方法,求出不等式2(x+1)≥4的解集,然后根据在数轴上表示不等式的解集的方法,把不等式2(x+1)≥4的解集在数轴上表示出来即可.
解答 解:由2(x+1)≥4,
可得x+1≥2,
解得x≥1,
所以一元一次不等式2(x+1)≥4的解在数轴上表示为:
.
故选:A.
点评 (1)此题主要考查了在数轴上表示不等式的解集的方法,要熟练掌握,解答此题的关键是要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.
(2)此题还考查了解一元一次不等式的方法,要熟练掌握,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
练习册系列答案
相关题目
16.函数y=$\sqrt{2-x}$+$\frac{1}{x-1}$中自变量x的取值范围是( )
| A. | x≤2 | B. | x≤2且x≠1 | C. | x<2且x≠1 | D. | x≠1 |