题目内容
3.(1)填空:(a-b)(a+b)=a2-b2;
(a-b)(a2+ab+b2)=a3-b3;
(a-b)(a3+a2b+ab2+b3)=a4-b4.
(2)猜想:
(a-b)(an-1+an-2b+…+abn-2+bn-1)=an-bn(其中n为正整数,且n≥2).
(3)利用(2)猜想的结论计算:
29-28+27-…+23-22+2.
分析 (1)根据平方差公式与多项式乘以多项式的运算法则运算即可;
(2)根据(1)的规律可得结果;
(3)原式变形后,利用(2)得出的规律计算即可得到结果.
解答 解:(1)(a-b)(a+b)=a2-b2;
(a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3=a3-b3;
(a-b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3-a3b-a2b2-ab3-b4=a4-b4;
故答案为:a2-b2,a3-b3,a4-b4;
(2)由(1)的规律可得:
原式=an-bn,
故答案为:an-bn;
(3)29-28+27-…+23-22+2=(2-1)(28+26+24+22+2)=342.
点评 此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.
练习册系列答案
相关题目
18.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,下列方程组正确的是( )
| A. | $\left\{\begin{array}{l}{x+y=52}\\{3x+2y=20}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=52}\\{2x+3y=20}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+y=20}\\{2x+3y=52}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=20}\\{3x+2y=52}\end{array}\right.$ |
8.一元一次不等式2(x+1)≥4的解在数轴上表示为( )
| A. | B. | C. | D. |
15.-$\frac{1}{3}$的绝对值等于( )
| A. | -3 | B. | 3 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |