题目内容

13.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求BC的长.

分析 根据等边三角形性质求出OA=OB=AB=4,根据平行四边形的性质求出OA=OC,OB=OD,得出AC=BD=8,证出四边形ABCD是矩形,得出∠ABC=90°,由勾股定理求出BC即可.

解答 解:∵△ABO是等边三角形,
∴OA=OB=AB=4,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∴OA=OC=OB=OD,
∴AC=BD=8,
∴四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$.

点评 本题考查了等边三角形的性质、平行四边形的性质,勾股定理,矩形的判定与性质;熟练掌握平行四边形和等边三角形的性质,证明四边形是矩形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网