题目内容
3.计算:(1)3$\sqrt{3}$-$\sqrt{8}+\sqrt{2}-\sqrt{27}$
(2)($\sqrt{0.5}-2\sqrt{\frac{1}{3}}$)-($\sqrt{\frac{1}{8}}$-$\sqrt{75}$)
(3)($\frac{1}{\sqrt{6}}$)-2+$\sqrt{20}$$÷\sqrt{5}$
(4)$\sqrt{14}$$÷\sqrt{6}$×$\sqrt{\frac{27}{2}}$.
分析 (1)先把各二次根式化为最简二次根式,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后去括号后合并即可;
(3)根据负整数指数幂和二次根式的除法法则运算;
(4)根据二次根式的乘除法则运算.
解答 解:(1)原式=3$\sqrt{3}$-2$\sqrt{2}$+$\sqrt{2}$-3$\sqrt{3}$
=-$\sqrt{2}$;
(2)原式=$\frac{\sqrt{2}}{2}$-$\frac{2\sqrt{3}}{3}$-$\frac{\sqrt{2}}{4}$+5$\sqrt{3}$
=$\frac{\sqrt{2}}{4}$+$\frac{13\sqrt{3}}{3}$;
(3)原式=6+$\sqrt{20÷5}$
=6+2
=8;
(4)原式=$\sqrt{14×\frac{1}{6}×\frac{27}{2}}$
=$\frac{3\sqrt{14}}{2}$.
点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
练习册系列答案
相关题目
11.化简(a-1)•$\sqrt{\frac{1}{1-a}}$的结果是( )
| A. | -$\sqrt{1-a}$ | B. | $\sqrt{1-a}$ | C. | -$\sqrt{a-1}$ | D. | $\sqrt{a-1}$ |
15.点P(-2,b)是反比例函数y=$\frac{2}{x}$的图象上的一点,则b=( )
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |