题目内容

20.如图,在矩形ABCD 中,AB=8,BC=4,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是正方形,则△AGE的面积为$\frac{5}{2}$.

分析 先根据正方形的性质和矩形的性质,判定△CFO≌△AOE,并求得AO的长,再判定△AOE∽△ABC,求得OE和AG的长,最后计算△AGE的面积.

解答 解:连接EF交AC于O,
∵四边形EGFH是正方形,
∴EF⊥AC,OE=OF,
∵四边形ABCD是矩形,
∴∠B=∠D=90°,AB∥CD,
∴∠ACD=∠CAB,
在△CFO与△AOE中,
$\left\{\begin{array}{l}{∠FCO=∠OAB}\\{∠FOC=∠AOE}\\{OF=OE}\end{array}\right.$,
∴△CFO≌△AOE(AAS),
∴AO=CO,
∵AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=4$\sqrt{5}$,
∴AO=$\frac{1}{2}$AC=2$\sqrt{5}$,
∵∠CAB=∠EAO,∠AOE=∠B=90°,
∴△AOE∽△ABC,
∴$\frac{OE}{BC}=\frac{AO}{AB}$,即$\frac{OE}{4}=\frac{2\sqrt{5}}{8}$
∴OE=$\sqrt{5}$=OG
∴AG=AO-GO=2$\sqrt{5}$-$\sqrt{5}$=$\sqrt{5}$
∵EF⊥AC
∴△AGE的面积=$\frac{1}{2}$×AG×OE=$\frac{1}{2}$×$\sqrt{5}$×$\sqrt{5}$=$\frac{5}{2}$
故答案为:$\frac{5}{2}$

点评 本题主要考查了正方形的性质,解决问题的关键是掌握全等三角形的判定与性质,以及相似三角形的判定与性质.本题若不运用相似三角形,则可以过点F作AB的垂线,构造直角三角形,并运用勾股定理进行计算求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网