题目内容

如图,∠DAB+∠ABC+∠BCE=360°.
(1)求证:AD∥CE;
(2)在(1)的条件下,如图,作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠F的余角等于2∠B的补角,求∠BAH的度数.
考点:平行线的性质
专题:
分析:(1)首先过点B作BM∥AD,由平行线的性质可得∠DAB+∠ABM=180°,又由∠DAB+∠ABC+∠BCE=360°,即可证得∠MBC+∠BCE=180°,则BM∥CE,继而证得结论;
(2)首先设∠BAF=x°,∠BCF=y°,过点B作BM∥AD,过点F作FN∥AD,根据平行线的性质,可得∠AFC=(x+2y)°,∠ABC=(2x+y)°,又由∠F的余角等于2∠B的补角,可得方程:90-(x+2y)=180-2(2x+y),继而求得答案.
解答:(1)证明:过点B作BM∥AD,
∴∠DAB+∠ABM=180°,
∵∠DAB+∠ABC+∠BCE=360°,
∴∠MBC+∠BCE=180°,
∴BM∥CE,
∴AD∥CE;

(2)解:设∠BAF=x°,∠BCF=y°,
∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F,
∴∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,
过点B作BM∥AD,过点F作FN∥AD,
∵AD∥CE,
∴AD∥FN∥BM∥CE,
∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°,
∴∠AFC=(x+2y)°,∠ABC=(2x+y)°,
∵∠F的余角等于2∠B的补角,
∴90-(x+2y)=180-2(2x+y),
解得:x=30,
∴∠BAH=60°.
点评:此题考查了平行线的性质与判定以及余角、补角的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网