题目内容

1.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是$\sqrt{2}$+$\sqrt{6}$.

分析 如图,连接AD,由题意得:CA=CD,∠ACD=60°,得到△ACD为等边三角形根据AC=AD,CE=ED,得出AE垂直平分DC,于是求出EO=$\frac{1}{2}$DC=$\sqrt{2}$,OA=AC•sin60°=$\sqrt{6}$,最终得到答案AE=EO+OA=$\sqrt{2}$+$\sqrt{6}$.

解答 解:如图,连接AD,
由题意得:CA=CD,∠ACD=60°,
∴△ACD为等边三角形,
∴AD=CA,∠DAC=∠DCA=∠ADC=60°;
∵∠ABC=90°,AB=BC=2,
∴AC=AD=2$\sqrt{2}$,
∵AC=AD,CE=ED,
∴AE垂直平分DC,
∴EO=$\frac{1}{2}$DC=$\sqrt{2}$,OA=CA•sin60°=$\sqrt{6}$,
∴AE=EO+OA=$\sqrt{2}$+$\sqrt{6}$,
故答案为$\sqrt{2}$+$\sqrt{6}$.

点评 本题考查了图形的变换-旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网