题目内容

9.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=$\frac{3}{5}$,BC=4,求AC的长.

分析 根据直径所对的圆周角等于90°,得∠ACB=90°,再由CD⊥AB.易得∠ACD=∠B,又由cos∠ACD=$\frac{3}{5}$,得出tanB,即可求得答案.

解答 解:∵AB为直径,
∴∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠BCD+∠B=90°,
∴∠B=∠ACD,
∵cos∠ACD=$\frac{3}{5}$,
∴cos∠B=$\frac{3}{5}$,
∴tan∠B=$\frac{AC}{BC}$,
∵BC=4,
∴tan∠B=$\frac{4}{3}$,
∴$\frac{AC}{4}$=$\frac{4}{3}$
∴AC=$\frac{16}{3}$.

点评 本题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网