题目内容

16.如图,△ABC中,∠C=90°.
(1)将△ABC绕点B逆时针旋转90°,画出旋转后的三角形;
(2)若BC=3,AC=4.点A旋转后的对应点为A′,求A′A的长.

分析 (1)利用旋转的性质画出点A和点C的对应点A′、C′即可得到△BA′C′;
(2)先利用勾股定理计算出AB=5,再利用旋转的性质得BA′=BA=5,∠A′BA=90°,则可判断△A′BA为等腰直角三角形,然后根据等腰直角三角形的性质求解.

解答 解:(1)如图,△BA′C′为所作;
(2)△ABC中,∵∠C=90°,BC=3,AC=4,
∴AB=$\sqrt{B{C}^{2}+A{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵△ABC绕点B逆时针旋转90°得到△BA′C′,
∴BA′=BA=5,∠A′BA=90°,
∴△A′BA为等腰直角三角形,
∴A′A=$\sqrt{2}$BA=5$\sqrt{2}$.

点评 本题考查了作图:旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网